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Anderson localization in a string of microwave cavities
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The field distributions and eigenfrequencies of a microwave resonator which is composed of 20 identical
cells have been measured. With external screws the periodicity of the cavity can be perturbed arbitrarily. If the
perturbation is increased a transition from extended to localized field distributions is observed. For very large
perturbations the field distributions show signatures of Anderson localization, while for smaller perturbations
the field distribution is extended or weakly localized. The localization length of a strongly localized field
distribution can be varied by adjusting the penetration depth of the screws. Shifts in the frequency spectrum of
the resonator provide further evidence for Anderson localization.@S1063-651X~99!10310-6#

PACS number~s!: 05.45.Mt, 72.15.Rn, 41.20.Jb
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I. INTRODUCTION

In 1958 Anderson calculated the effects of perturbatio
of a periodic lattice on the eigenvalues and eigenfunction
the Schro¨dinger equation@1#. He was able to show that for
variety of disordered potentials the eigenfunctions are ex
nentially localized in a small region of the lattice due to t
interference of waves scattered from the perturbations or
purities. Until then the localization of waves played a cruc
role in almost every physical domain—for a review see, e
@2#. In the case of a long, disordered one-dimensional~1D!
chain it could be shown rigorously, that Anderson localiz
tion occurs for a very large class of potentials@3–5#. How-
ever there are classes of disordered potentials where
tended states do exist@6,7#. It has been conjectured tha
localization effects are far more general@8–10# and are a
generic feature of wave equations@11,12#.

Experiments working with electromagnetic waves a
usually focusing on secondary features of localization, e
coherent backscattering@13,14# or the investigation of the
transmission and absorption coefficients@15–17#. A direct
search for localization in electromagnetic field distributio
has only very recently been attempted in two-dimensio
~2D! @18# and three-dimensional~3D! systems composed o
1D waveguides@19#. In the present paper we report on th
direct observation of Anderson localization in an electrom
netic system, i.e., a microwave resonator, governed by
vectorial Helmholtz equation, with a perturbed periodicit
So far microwave resonators have been a major experime
tool for the investigation of so-called quantum billiard sy
tems@20–26#, i.e., a pointlike particle caught in a potenti
with infinitely high walls, or recently for the study of mode
used in nuclear physics@27#. In all these experiments th
analogy between thescalar Helmholtz equation which de
scribes the electromagnetic field inside aflat microwave cav-
ity and the Schro¨dinger equation is used and the energy sp
tra of the resonators are statistically analyzed—for a rev
of a wide range of experiments and the statistical meth
used see, e.g.,@28#.

Here we will discuss experiments performed with a s
called three-dimensional microwave cavity, i.e., a resona
PRE 601063-651X/99/60~4!/3942~7!/$15.00
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that has to be described by the vectorial Helmholtz equa
and belongs to the class of resonators investigated in@29–
32#. As mentioned earlier these experiments compose a
rect experimental search for Anderson localization in su
systems, not to be confused with the study of higher dim
sional lattices described by the Schro¨dinger equation@33#.
One of the main problems in such an experimental inve
gation is the limited size of the system at hand. In numeri
simulations of finite chains described by the Schro¨dinger
equation the number of elementary cells is usually some h
dred cells or even higher~for an early review see, e.g.,@34#!,
while a realistic experimental setup with a chain of micr
wave resonators has to have a much smaller number o
ementary cells to keep the dimension of the system at
acceptable level.

The paper is organized as follows. In Sec. II we will giv
a description of the microwave resonator and the experim
tal methods used to measure the resonance frequencies
the field distributions of the cavity. After having verified th
the unperturbed system is indeed periodic and that we
extended states we proceeded to investigate the influenc
a single perturbation of the periodicity on the eigenstates
eigenfrequencies—the results are given in Sec. III. As a th
possible configuration we tried to setup a disordered ch
and measured the field distributions discussed in Sec. IV

II. EXPERIMENT

To simulate periodic and perturbed systems, an accele
ing cavity of the superconducting Darmstadt linear elect
accelerator S-DALINAC@35# has been modified. The cavit
itself is manufactured from 2-mm-thick Niobium sheetme
and consists of 18 identical cells and two slightly differe
cells at the ends of the chain to compensate the influenc
the cutoff tubes attached to the outer cells. The cylindri
symmetric section with the 20 cells has a length of 1 m a
the diameter of a single cell varies between 91 mm and
mm. A sketch of the modified accelerating cavity is given
Fig. 1. Below 3.5 GHz the two cutoff tubes cause an exp
nential decay of the electromagnetic field outside the 20
3942 © 1999 The American Physical Society
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PRE 60 3943ANDERSON LOCALIZATION IN A STRING OF . . .
section@36# and above 3.5 GHz two niobium plates can
used to close the first and the last cell. In both cases only
20 cell section is excited up to 20 GHz by a HP8510B v
torial network analyzer connected to a set of 20 identical
periodically mounted capacitively coupling dipole antenn
We chose a large penetration depth of 8 mm for the anten
to ensure that even modes which are localized in just on
two cells can be observed in the transmission spectra. C
has been taken to ensure that all antennas are identica
periodically mounted so that the periodicity of the resona
is not perturbed by the antennas themselves. To perturb
periodic setup every second cell is equipped with an adj
able lead screw with a diameter of 20 mm which can p
etrate into the resonator’s volume. The penetration dept
each screwdi50 mm, i 51,3,...,19 can be continuously var
ied between 0 and 47 mm. The cavity therefore allows
investigation of three different setups, i.e., a periodic syst
a system with a single perturbation or impurity with variab
strength and a disordered system where thedi ’s are set to
random values. Despite the fact that the measurement o
field distributions has been performed at room temperat
all materials used will become superconducting at temp
tures which can easily be reached inside a LHe-bath cryo
described in@28# to allow future high resolution measure
ments of the cavity’s spectra.

The electromagnetic fieldsEW andBW inside the cavity are
described by the vectorial Helmholtz equation@36#

S D1em
v2

c0
2 DEW ~rW !50W ~1!

and

S D1em
v2

c0
2 DBW ~rW !50W ~2!

with the corresponding boundary conditions

EW i~rW !u]G50W and ~3!

BW'~rW !u]G50W

on the wallsdG which are assumed to be ideally conductin
The well known analogy between flat electromagnetic ca
ties and two-dimensional quantum potentials, that has sti
lated a multitude of experiments@28# is, of course, lost. As
mentioned above the effects of Anderson localization can
found either in the eigenfunctions, in our case the elec
magnetic field distributions, or the energy spectrum, in
case the set of resonance frequencies, of a system. We
amined therefore both, the field distributions and the ene
spectrum, for signatures of localization effects.

FIG. 1. Sketch of the two end sections of the modified acce
ating cavity. Besides the identical dipol antennas two of the adj
able lead screws are shown.
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The electromagnetic field amplitudes inside the cavity c
be measured using Slater’s theorem formulated in@37# that
describes shifts of the resonance frequencies of a microw
cavity if a perturbing body is brought into the resonati
volume. The electric and the magnetic field energies insid
microwave cavity which is excited in resonance are of eq
magnitude if the cavity is in a stationary state. If an exter
body is introduced into the resonator, the field energies
shifted and the resonance frequencyf 0 will be adjusted in a
way that the electric and magnetic field energies beco
equal again and a new stationary state is reached. Accor
to @37# the frequency shiftD f 5 f 2 f 0 of a resonance cause
by a perturbing body of volumeDV is

D f

f 0
5

1

4U E
DV

~ee0EW 22mm0HW 2!dV, ~4!

where U is the total energy stored in the electromagne
field ande andm are the perimittivity and the permeability o
the perturbing body. IfDV is small compared to the wave
length of the mode under investigation, the perturbing bo
is moved on a nodal line of the magnetic field~i.e., HW 50W )
and is composed of a dielectric material, Eq.~4! can be writ-
ten as

D f

f 0
5

ee0DV

4U
EW 2, ~5!

which immediately leads to the proportional relation

D f }EW 2. ~6!

The squared field strengthEW 2 can therefore be calculate
directly from measurements of the frequency shift caused
a small perturbing body.

To measure the frequency shift we used the experime
set-up sketched in Fig. 2. The resonator is moved with
speed of 1m/min while the perturbing body is fixed on t
symmetry axis of the cavity with a very thin string, to pr
vent oscillations of the body. The first 20 resonances of
cavity are transverse magnetic~TM! modes for which the
magnetic field is zero on the axis. We further used a cy
drical Teflon bead as a perturbing body with a volume

r-
t-

FIG. 2. Sketch of the experimental setup we used to measure
field distributions of the resonator. The cavity is moved by a D
motor on a sledge while the Teflon cylinder is fixed on the axis
Pentium-133 PC is used for an online data analysis.
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3944 PRE 60C. DEMBOWSKI et al.
DV52 mm3 and a permittivity ofe'2.1 and a permeability
of m'1 @38#. The special symmetry of our system and t
perturbing body we are using allows us to measureEW 2 di-
rectly by using Eq.~6! unlike similar experiments@32#,
where a metallic perturbing body is used and the compo
quantity22EW 1BW is measured.

The network analyzer can be set to continuously swee
range of 1 MHz across the last position of the resona
which takes a time of 184 ms. In the upper part of Fig. 3
part of the transmission spectrum with a resonance at 2.8
GHz and the Teflon cylinder outside and inside the reson
is shown. The frequency shiftD f caused by the perturbatio
of the electromagnetic field is clearly visible. Neverthele
additional noise blurs the position of the resonance so th
is impossible to find its position by simply looking for th
frequency with the highest transmission. Transmitting
data via the IEEE bus for an offline analysis with, e.g., fitt
resonance curves is also not practical since during the
needed for the data transfer ('1 s) the cavity moves abou
16 mm. Beside the measurement of the ratio between
received and the emitted wave, the HP8510B allows
analysis of the phase relationf between the received and th
emitted wave which shifts byp at the resonance frequenc
For a resonance with a frequencyf 0 and a quality factorQ
one can write the phase relation as@36#

f5arctanS f f 0

Q~ f 0
22 f 2! D 1p/2 ~7!

which can be expanded around the pointf 5 f 0 to a linear
relation

f5
p

2
12

Q~ f 02 f !

f 0
1O~ f 2!. ~8!

As one can see in the lower part of Fig. 3 the frequen
shift D f is small compared to the region where the line
series approximation of Eq.~7! is applicable. The network
analyzer is therefore set to emit a wave with the frequencyf 0
and measure the phase relationf between the received an

FIG. 3. Transmission spectra~top! and phase relationsf be-
tween the received and the emitted wave~bottom!, showing the
perturbation introduced by the Teflon cylinder.
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the emitted wave. Since no time consuming sweep is
quired for measurements performed at a constant freque
the Teflon bead is assumed to be fixed during each meas
ment and the received signal can be averaged up to 4
times, therefore greatly reducing the underlying noise. T
difference of the phase relations with the bead outside
inside the cavity,Df, as shown in the lower part of Fig. 3
can then easily be used with Eq.~8! to compute the field
amplitudes. From Eqs.~6! and~8! one gets the proportional
ity relation

Df}D f }EW 2. ~9!

In a first step we measured the field distribution of t
unperturbed cavity, i.e., the penetration depths of the scr
were set to zero, and compared our measurements with fi
element calculations using theMAFIA @39# computer code.
The model used for the finite element calculations is cyl
drically symmetric with a resolution of 1 mm30.25 mm and
allows the calculation of the resonance frequencies and
field distributions of the first 40 TM modes. In Fig. 4 th
experimental and the calculated electric field distributions
the 20th mode are compared, showing that the effects
small deviations from the ideal geometry, either due to
additional holes that were drilled into the cavity or the cu
off tubes, are negligible.

III. A SINGLE PERTURBATION

If the system does show a transition from extended
localized states if the periodicity is perturbed—despite
finite size and the fact that it has to be described by
vectorial Helmholtz equation—one expects for a single p
turbation of the otherwise periodic chain onlyone local im-
purity mode in each band with a localized field distributio
We therefore investigated the development of the field d
tribution of the first resonance if the penetration depth of
arbitrary screw~here the one in cell no. 13! is increased. The
evolution of the wave function is shown in Fig. 5, where w
plotted the frequency shiftD f against the positionz of the
Teflon bead. Beside perturbing the periodicity of the cav

FIG. 4. Field distributionsEW 2(z) of the unperturbed cavity, mea
sured with our setup~expt.! and calculated with the finite elemen
code MAFIA. The position on the axis of the cavity is denoted
z.
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PRE 60 3945ANDERSON LOCALIZATION IN A STRING OF . . .
the screw also breaks its cylindrical symmetry so that
cavities axis is not a nodal line of the magnetic field an
more. Calculations withMAFIA have nevertheless shown th
the magnetic field on the axis is still zero for a wide range
penetration depths. For penetration depths above app
mately 40 mm the actual electric field is slightly larger th
the one determined by Eq.~9! since the proportionality rela
tion has to be written as

Df}D f }ee0EW 22mm0HW 2. ~10!

For d13515 mm the first resonance excites the whole cav
@Fig. 5~a!# while for an increasingd13 the field amplitude
drops down to zero almost everywhere in the resonator.
field distribution of the first resonance even localizes up t
point whereonly the disturbed and a few neighboring ce
are excited@Fig. 5~d!#. As it is the case for systems describ
by the Schro¨dinger equation, the field distributions of th
other 19 modes of the first TM band are still extended o
the whole cavity.

In the case of strong localization in quantum systems
envelope of the localized eigenfunction can for a wide ran
of perturbed potentials be approximated by an exponenti
decaying function@1,3#, i.e.,

uc loc~z!u2}expS 2
uz2z0u

Lloc
D , ~11!

wherez0 is the position of the perturbation andLloc is called
the localization length.

Despite the fact, that even for strongly localized mod
the field distribution is not symmetric with respect
z0—mainly because of the small dimensions of our system
Eq. ~11! can be used to describethe envelopeof EW 2 for a
wide range of penetration depthsd13. In Fig. 6 one can see
nearly linear dependence betweend13 and Lloc for penetra-
tion depths above 35 mm. For a smaller perturbation the fi

FIG. 5. Shift D f in the resonance frequency of the first res
nance caused by the Teflon cylinder for different penetration de
d13 of the screw in cell no. 13.
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distribution shows a clear maximum@see, e.g., Fig. 5~b!#
around the perturbing screw, but Eq.~11! cannot be used to
describe the envelope ofEW 2, since the decay is not exponen
tial, andLloc is therefore not well defined. To underline th
point that the field distribution has a maximum in the d
turbed cell one usually calls this form of localizationweak
localization @40#. The behavior of the field distributions o
our microwave resonator can be compared to the eigenfu
tions computed for numerical models with a single pertur
tion of a periodic chain@34#.

Beside the transition from an extended to an exponenti
localized eigenfunction the solutions of the Schro¨dinger
equation do have other prominent features in periodic po
tials with a single perturbation. One of these is a shift in t
eigenvalue of the local impurity mode, while the eigenvalu
of the solutions in a band that are still extended over
system remain fixed. An investigation of the resonance
quencyf 0 of the first eight modes of the microwave reson
tor while d13 is increased, see Fig. 7, shows that only t
local impurity mode—in this case the lowest excitation
the cavity—experiences a notable shift in its resonance
quency. Even in the regime of weak localization, i.e., arou
d13'30 mm, where the field distributions of all modes a
extended over the whole cavity, no shift of the resonan
frequency of the first mode is observed. The transition fr
an extended or weakly localized state to a strong, i.e., ex

hs

FIG. 6. Localization lengthLloc , i.e. the length whereEW 2 de-
creases by 1/e, for various penetration depthsd13. For penetration
depths smaller than 35 mm the field distributions are only wea
localized andLloc is not well defined.

FIG. 7. Resonance frequenciesf 0 of the first eight modes for
different penetration depthsd13. A notable frequency shift which is
going along with a localization of the field distribution can only b
observed for the first mode.
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3946 PRE 60C. DEMBOWSKI et al.
nential, localized state can therefore not only be observed
measuring the eigenfunctions but also by looking at
eigenfrequencies. To conclude this section we like to s
that we found a complete correspondence between the e
functions and eigenvalues of the Schro¨dinger equation in a
periodic potential with a single perturbation and the fie
distributions and resonance frequencies of a periodic 3D
crowave cavity with a single, sufficiently large perturbatio

IV. MULTIPLE PERTURBATIONS

In contrast to the emerging of a local impurity mode at t
position of a single perturbation or impurity, one expects
a large class of one-dimensional disordered systems thaall
the eigenfunctions of a scalar wave equation are expon
tially localized @1,3–5#. For disordered acoustic systems
coexistence between extended, weakly localized and stro
localized modes has been reported by He and Maynard@41#.
To examine the behavior of a disordered electromagn
system we set the penetration depths of all screws to vari
non periodic alternating lengths. The positions of the scre
are sketched in an inset above Fig. 8 where also sev
different field distributions are shown.

In contrast to the predictions for one-dimensional syste
in @1,3–5# not all field distributions are exponentially loca
ized as for example the first@Fig. 8~a!# or the 20th@Fig. 8~b!#
mode with localization lengths ofLloc

1 '45 mm andLloc
20

'60 mm. We still found states which show weak localiz
tion, e.g., the fifth mode@Fig. 8~c!#, or that are still extended
throughout the whole system@ninth mode, Fig. 8~d!#. Dean
and Bacon found a similar behavior in an early numeri
model where they studied the eigenfunctions of a disorde
harmonic chain composed of 22 light atoms and 28 he

FIG. 8. Field distributions of a disordered cavity—the positio
of the screws are sketched above the plot. While on the edges o
first band the modes are strongly localized@~a! and ~b!# there are
still weakly localized modes~c! or even extended modes~d! in the
middle of the band.
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ones and which is described by the Schro¨dinger equation
@42#. In their model, localization occurs always on the upp
edge of a band, while we are observing localization at bo
the upper and the lower edge of the first band. The exten
modes we are observing are found in the middle of the b
like the ninth mode shown in Fig. 8~d!. As mentioned above
a coexistence of localized and extended modes has bee
ready observed for an acoustic system@41#.

Our particular setup allows the examination of anoth
interesting system: If the penetration depths off all scre
are set to the same value, the system will be periodic aga
an elementary cell is now composed of an unperturbed a
perturbed cell—and should therefore show only extend
wave functions. As an example we compare in Fig. 9
field distributions of the 19th mode of the cavity withdi

50 mm, i 51,3,...,19 anddi540 mm, i 51,3,...,19. As ex-
pected we found, that both wave functions have essenti
the same envelope, despite the fact that for arandomlyper-
turbed setting the 19th mode is strongly localized. In bo
cases the field distribution is not exactly symmetric—an
fect that is caused by geometrical imperfections and whic
also visible in the upper part of Fig. 4.

V. CONCLUSION

By using an appropriately shaped 3D microwave cav
we investigated a finite, periodic or disordered system w
eigenfunctions described by the vectorial Helmholtz eq
tion. The field distributions inside the cavity were measur
by analyzing the phase shifts caused by a small dieelec
body inside the resonator. In the case of a chain of qu
identical cells we find extended field distributions—th
whole resonator volume is excited.

It is well known that the eigenstates of a scalar wa
equation are exponentially localized in the case of infinit

he

FIG. 9. Field distribution of the 19th mode in the unperturb
cavity ~top! and in theperiodicallyperturbed cavity~bottom!. Both
states are extended over the whole resonator and have simila
velopes.
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PRE 60 3947ANDERSON LOCALIZATION IN A STRING OF . . .
long, disordered chains and that there is always one lo
impurity mode per band in the case of a single perturba
or impurity of the chain. Our experiments showed that
same behavior can be observed for a finite—in fact with j
20 cells very small—system although it is described by
vectorial Helmholtz equation. We observed the transit
from an extended state to an exponentially localized stat
the case of a single perturbation by looking at the field d
tribution and the resonance frequency of the mode. In
regime of strong localization we found a linear depende
between the localization length and the penetration dept
the screw that causes the perturbation. The current setup
not allow the investigation of totally disordered chains b
enables us to study systems where extended modes co
with strong and weakly localized ones which can be co
pared to certain numerical models for scalar problems@42# or
results found in acoustic systems@41#. It is also possible to
study chains composed of a periodic array of two-cell e
ments in whichall states are extended over the whole cav

Our experiments showed that appropriately shaped mi
wave cavities exhibit all the features of extended perio
systems—despite the fact that they are finite and in our c
t,
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have to be described by vectorial wave equations. The lo
ization of an eigenfunctions of the vectorial Helmholtz equ
tion can be observed in this electromagnetic system.
experimental verification of predictions on the statistical b
havior of extended billiard chains, see, e.g.,@43#, should
therefore be possible and combine the results of the theor
periodic systems and so-called quantum chaotic syst
@28#. The experimental setup itself already allows the stu
of various problems from the fields of solid-state physics a
scattering problems in a very clean and pedagogical way

ACKNOWLEDGMENTS

We would like to thank the workshop of the Institut fo
Nuclear Physics in Darmstadt for the excellent and prec
modifications of the microwave resonator. We would a
like to thank T. Dittrich, S. Fishman, Y. Imry, C. Ranga
charyulu, U. Smilansky, and H.-J. Sto¨ckmann for very help-
ful discussions. This work has been supported in part by
Sonderforschungsbereich 185 ‘‘Nichtlineare Dynamik’’
the Deutsche Forschungsgemeinschaft~DFG! and through
the Forschergruppe under Contract No. DFG RiI242/12-1
.
n-

,
. E

,

e

.

-

ett.

.

-

@1# P. W. Anderson, Phys. Rev.109, 1492~1958!.
@2# B. A. van Tiggelen, inDiffuse Waves in Complex Media, ed-

ited by J.-P. Fouque~Kluwer Academic Publishers, Dordrech
1999!, pp. 1–60

@3# L. Pastur, Commun. Math. Phys.75, 179 ~1980!.
@4# H. Kunz and B. Souillard, Commun. Math. Phys.78, 201

~1980!.
@5# F. Delyon, Y. E. Levy, and B. Souillard, Phys. Rev. Lett.55,

618 ~1983!.
@6# J. S. Denbigh and N. Rivier, J. Phys. C12, L107 ~1979!.
@7# A. Crisanti, C. Flesia, C. Pasquarello, and A. Vulpiani,

Phys.: Condens. Matter1, 9509~1989!.
@8# S. John and M. J. Stephen, Phys. Rev. B28, 4106~1983!.
@9# M. Y. Azbel, Phys. Rev. B28, 4106~1983!.

@10# T. R. Kirkpatrick, Phys. Rev. B31, 5746~1985!.
@11# A. Figotin and A. Klein, Commun. Math. Phys.180, 439

~1996!.
@12# A. Figotin and A. Klein, Commun. Math. Phys.184, 411

~1997!.
@13# M. P. van Albada and A. Lagendijk, Phys. Rev. Lett.55, 2692

~1985!.
@14# P.-E. Wolf and G. Maret, Phys. Rev. Lett.55, 2696~1985!.
@15# N. Garcia and A. Z. Genack, Phys. Rev. Lett.66, 1850~1991!.
@16# A. Z. Genack and N. Garcia, Phys. Rev. Lett.66, 2064~1991!.
@17# U. Kuhl and H.-J. Sto¨ckmann, Phys. Rev. Lett.80, 3232

~1998!.
@18# S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, a

S. Schultz, Phys. Rev. Lett.67, 2017~1991!.
@19# Z. Q. Zhang, C. C. Wong, K. K. Fung, Y. L. Ho, W. L. Chan

S. C. Khan, T. L. Chan, and N. Cheung, Phys. Rev. Lett.81,
5540 ~1998!.
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@32# U. Dörr, H.-J. Stöckmann, M. Barth, and U. Kuhl, Phys. Rev
Lett. 80, 1030~1998!.

@33# J. L. Pichard and G. Sarma, J. Phys. C14, L617 ~1981!.
@34# K. Ishii, Prog. Theor. Phys. Suppl.2, 77 ~1973!.
@35# A. Richter, inProceedings of the Fifth Europian Particle Ac



.
,

3948 PRE 60C. DEMBOWSKI et al.
celerator Conference, edited by S. Myerer, A. Pachecco, R
Pascual, Ch. Petit-Jean-Gena, and J. Poole~Sitges, Barcelona
1996!, p. 110.

@36# J. D. Jackson,Classical Electrodynamics~John Wiley and
Sons, New York, 1975!, 2nd ed.

@37# L. C. Maier, Jr. and J. C. Slater, J. Appl. Phys.23, 1352
~1968!.

@38# A. F. Harvey,Microwave Engineering~Academic Press, Lon-
don, 1963!.
@39# T. Weiland, Numer. Modelling9, 295 ~1996!.
@40# V. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett.75,

822 ~1995!.
@41# S. He and J. D. Maynard, Phys. Rev. Lett.57, 3171~1986!.
@42# P. Dean and M. D. Bacon, Proc. Phys. Soc. London81, 642

~1963!.
@43# E. Doron, U. Smilansky, and T. Dittrich, Physica B & C 179,

1 ~1992!.


